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Leukotrienes (LTs) are a family of important inflam­
matory mediators produced by an enzymic cascade which 
is initiated by the action of 5-lipoxygenase (5-LPO) on 
arachidonic acid. LTB4 is a potent chemotactic agent and 
inflammatory mediator1 and the peptidoleukotrienes LTC4 
and LTD4 are powerful spasmogens in bronchial and 
vascular tissues.2 It is believed that limiting the biosyn­
thesis of LTs through inhibition of 5-LPO will provide 
clinical benefits in a number of inflammatory conditions 
such as asthma and rheumatoid arthritis that are asso­
ciated with elevated levels of LTs. 

While various series of 5-LPO inhibitors are known, in 
few of these are distinct structure-activity relationships 
evident and, in particular, where chiral inhibitors have 
been resolved, it is rare to observe enantioselectivity. For 
example, there is no difference in inhibitory potency 
between the enantiomers of BW B218C (l)3 (Chart I). In 
contrast, we have reported an exception to this trend with 
(methoxyalkyl)thiazoles, a chiral series exemplified by ICI 
216800 (2), whose enantiomers showed marked differences 
in potency in various in vitro and in vivo systems.4,5 More 
recently, we have described further developments ema­
nating from the (methoxyalkyl)thiazoles that lead to 
4-methoxytetrahydropyrans, a related series of 5-LPO 
inhibitors.6 One member of this series, ICI D2138 (3), is 
under clinical investigation. The 4-methoxytetrahydro­
pyrans described to date are achiral and we now wish to 
report that chiral members of this series bearing 2-methyl 
substitution on the tetrahydropyran ring, i.e. 8, exhibit 
enantioselective inhibition of LT biosynthesis. 

The four diastereomers of 8 were prepared by analogy 
with the route previously described for 36 using (R)- or 
(S)-2-methyltetrahydropyranone (5) (Scheme I). The 
lithio- or Grignard reagents of 4 were treated with either 
(R)- or (S)-5 and each pyranone produced a mixture of 
two diastereomeric hydroxy compounds 6 arising from 
addition to the ketone either cis or trans to the 2-methyl 
substituent. These diastereomers were readily separated 
chromatographically. Using (±)-57 to define reaction 
conditions, it was found that lithio 4 generated 6 in a cis: 
trans ratio of 1:3 whereas with the Grignard reagent the 
ratio was 2:1. NOE experiments8 on the diastereomers of 
7 confirmed predictions from molecular mechanics cal­
culations using AESOP9 that the lowest energy confor­
mations are as indicated in Chart II. That is, the ring 
conformations are dominated by a requirement for the 
2-methyl substituents to be equatorial, resulting in the 
4-aryl group being equatorial in the cis compounds and 
occupying the axial position in the trans compounds. 
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(S)-2-Methyltetrahydropyranone [(S)-5] was prepared10 

as indicated in Scheme II. A Sharpless kinetic resolution 
of 911 using catalytic conditions12 gave epoxide 11, which 
was reduced with Red-Al to the 1,3-diol 12.13 Ozonolysis 
converted 12 to the epimeric lactols 13, which, after 
protection of the hydroxyl functions, were reduced with 
EtsSiH/TMSOTf14 to the pyranol 14. Oxidation provided 
(S)-5 with an ee > 95 %. Assignment of the S-configuration 
follows15 from the Sharpless epoxidation and was con­
firmed by comparison with (±)-5 and (i?)-516 using HPLC 
on a chiral support.17 For synthetic purposes, (R)-5 was 
obtained from resolution with (+)-l-methylbenzylamine 
of ds-2-methyl-4-pyranol hemiphthalate ester. Hydrolysis 
of the resolved phthalate and oxidation gave (i?)-5 with 
anee > 90%. 

The isomers of 8 were evaluated in vitro for inhibition 
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Scheme II* 
OH OH 

10 1 1 

HO' 

12 

(e) 

OH OH O 

XS <d», r^S (e). r ^ , 
nw 0^'-» ^O^'-v SA* 

1 3 14 (S)-5 

<• Reagents: (a) Ti(OiPr)4, (+)-DEPT (0.1 equiv), TBHP, molecular 
seives, CH2C12, -20 °C; (b) 3.4 M Redal in toluene, THF, 0 °C; (c) 03l 
MeOH, -20 °C; (d) (1) EtOH, HC1; (2) Et3SiCl, imidazole, DMF, 
room temperature; (3) Et3SiH, TMSOTf, -20 °C; (e) Cr03, acetone. 

Table I 

ICS 

no. 
aba [<X]D,° 

config deg 
anal­
ysis6^ 

human whole 
blood,''* MM 

mouse 
macrophages,' 

nM 

8a 
8b 
8c 
8d 

2R,iR 
25,45 
2A.45 
2S,4J? 

+10.9 
-12.7 
-1.8 
+1.6 

CHN 
CHN 
HN;C 
CHN 

0.14 (0.053-O.36) 
1.76 (0.68-4.58) 
0.67 (0.26-1.74) 
0.017 (0.0065-0.044) 

8 (1.8-36) 
60 (13-270) 
9(2-41) 
0.4 (0.09-1.8) 

- 29 °C c = 0.5 g/100 mL (CH2C12).*Analyses for C, H, and N were 
within ±0.4% of the theoretical value except where indicated 
otherwise.c 8a, mp 118-120 °C; 8b, mp 128-30 °C; 8d, mp 91-3 °C; 
8c was an oil. d Mean of two determinations each performed in 
duplicate.«95% confidence limits are shown in parentheses. 'C: 
calcd, 70.1; found, 69.1. Calcd for C24H27FN04 (M + H)+ 412.1924, 
found 412.1925; purity > 98% by HPLC analysis. 

of LTB4 synthesis in A-23187-stimulated human whole 
blood and of LTC4 synthesis in plasma protein-free cultures 
of zymosan-stimulated mouse macrophages (Table I).18 

In these systems, the enantiomeric pair 8c,d showed 
potency differences of 39- and 22-fold in whole blood and 
macrophages, respectively. The alternate pair 8a,b, 
exhibited a potency difference of 13-fold in whole blood 
with a slightly reduced ratio being observed in macroph­
ages.19 Importantly, the same enantiomer in each pair 
was the more potent in both test systems. However, the 
enantiomer 8d bearing a 2(S)-methyl was the more potent 
in the 8c,d pair while the 2(A) enantiomer 8a was more 
potent in the 8a,b pair. The consistency of the potency 
ratios between enantiomers in whole blood and in mac­
rophages indicated that the potency differences observed 
in blood did not arise from differential binding to plasma 
proteins. 

Thus, the enantioselective inhibition of LT biosynthesis 
first observed among (methoxyalkyl)thiazole inhibitors is 
now extended to chiral members of the related series of 
4-methoxytetrahydropyrans. This is in marked contrast 
with other chiral series of LT biosynthesis inhibitors for 
which no enantioselectivity has been observed. The in 
vivo activity of 8a-d will be reported separately. 
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